## COMPLEX ANALYSIS MIDTERM

I have not used any unfair or illegal means to answer any of the questions in this exam.

## Name:

## Signature:

You may use the theorems we have done in class for the questions without having to reprove them - but please state what you use.

Let $f$ be a holomorphic function on $\mathbb{C}$ such that

$$
|f(z)| \leq A|z|^{n}+B
$$

for some positive real numbers $A$ and $B$ and for all $z \in \mathbb{C}$. Show that $f$ is a polynomial.
2. Prove that the function $f(z)=\frac{1}{z}$ has a primitive in $D(1,1)$, the open disc of radius 1 around 1 .
3. Let $f$ and $g$ be holomorphic functions on $\mathbb{C}$. If there exists $a \in \mathbb{C}$ such that $f_{a}$ and $g_{a}$ lie in the same connected component of $\mathcal{O}$, show that $f=g$.

